Niacin Reverses Migratory Macrophage Foam Cell Arrest Mediated by oxLDL In Vitro
نویسندگان
چکیده
INTRODUCTION Niacin reduces vascular oxidative stress and down regulates inducible nitric oxide synthase, an enzyme mediating proatherosclerotic effects in part by increasing oxidative stress. Here, we evaluate whether Niacin reverses the redox sensitive migratory arrest of macrophages in response to oxidised(ox) LDL uptake. MATERIAL AND METHODS Migration of RAW264.7 cells, a murine macrophage cell line and bone marrow derived macrophages from wildtype and iNOS knockout mice was quantified using a modified Boyden chamber. Unstimulated cells or cells preincubated with oxLDL or non-oxidised (n)LDL were treated with Nicotinic acid or Nicotinamide. Nitric oxide, peroxynitrite and ROS production were assessed using electron paramagnetic resonance (ESR). Additionally, flow cytometry analysis of apoptosis, fokal adhesion kinase (FAK), phalloidin, CD36, F4/80 macrophage marker and iNOS gene expression (PCR) were assessed. RESULTS Migration of Nicotinic acid, Nicotinamide treated cells or unstimulated cells did not differ (P>0.05). oxLDL treatment significantly reduced migration vs. unstimulated cells (p<0.05). In contrast, migratory arrest in response to oxLDL treatment was reversed by co-incubation with Nicotinic acid and Nicotinamide. The oxLDL-induced peroxynitrite formation in RAW264.7 cells was abolished by Niacin and glutathion (GSH) oxidation was significantly reduced. However, nitric oxide (NO)- and reactive oxygen species (ROS) production induced by oxLDL were not affected by Niacin treatment of RAW264.7 cells. In addition, Nicotinic acid and Nicotinamide reduced actin polymerization, a marker for migratory arrest. DISCUSSION Our data shows that oxLDL induced inhibition of macrophage migration in vitro can be reversed by Niacin. Furthermore, Niacin reduces peroxynitite formation and improves antioxidant GSH.
منابع مشابه
IRGM1 regulates oxidized LDL uptake by macrophage via actin-dependent receptor internalization during atherosclerosis
Macrophage derived foam cells are actively involved in the initial phase of atherosclerosis. Uptake of modified lipoprotein such as oxidized LDL (oxLDL) is a critical step for foam cell formation. CD36 is the major receptor mediating oxLDL uptake by macrophage. However, the molecular mechanism underlying CD36 mediated oxLDL uptake remains unclear. Here we reported that IRGM1 (IRGM in human), a ...
متن کاملPuerarin Inhibits oxLDL-Induced Macrophage Activation and Foam Cell Formation in Human THP1 Macrophage
Puerarin, an isoflavone derived from Kudzu roots, has been widely used for treatment of cardiovascular and cerebral vascular diseases in China and other Asian countries. However, the underlying mechanisms are largely unknown. The present study investigated whether puerarin inhibited atherogenic lipid oxLDL-mediated macrophage activation and foam cell formation in human THP1 macrophage. Treatmen...
متن کاملIntermedin inhibits macrophage foam-cell formation via tristetraprolin-mediated decay of CD36 mRNA.
AIMS CD36-mediated uptake of oxidized low-density lipoprotein (oxLDL) plays a pivotal role in macrophage foam-cell formation and atherogenesis. Previously we reported on intermedin (IMD), a novel member of the calcitonin gene-related peptide family, in atherosclerotic plaque reducing atherogenesis in apolipoprotein E-deficient (apoE(-/-)) mice. Here, we studied the role of IMD in CD36-mediated ...
متن کاملNicotine potentiates proatherogenic effects of oxLDL by stimulating and upregulating macrophage CD36 signaling.
Cigarette smoking is a major risk factor for atherosclerosis and cardiovascular disease. CD36 mediates oxidized LDL (oxLDL) uptake and contributes to macrophage foam cell formation. We investigated a role for the CD36 pathway in nicotine-induced activation of macrophages and foam cell formation in vitro and in vivo. Nicotine in the same plasma concentration range found in smokers increased the ...
متن کاملSpecific interaction of oxidized low-density lipoprotein with macrophage-derived foam cells isolated from rabbit atherosclerotic lesions.
Interaction of oxidized LDL (OxLDL) with macrophage-derived foam cells is one of the key events in the development and progression of atherosclerosis. To study this interaction, macrophage-derived foam cells were isolated from rabbit atherosclerotic lesions and the expression of scavenger receptors for OxLDL was examined. Atherosclerosis was induced in rabbits by denudation of the large arterie...
متن کامل